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Abstract. The Lindemann criterion for flux-lattice melting is extended to the limit of elec- 
tronically decoupled layers (infinite effective mass perpendicular to the layers). The resulting 
melting temperature resembles the formula for two-dimensional melting in a film, but with 
an effective film thickness characteristic of electromagnetic interlayer coupling. 

Recent experiments by Gammel cl‘ a1 [l] suggested that in a strong magnetic field the 
flux lattice in a high-T, Bi- or T1-based superconductor can melt at a temperature much 
less than T,(B). Stimulated by this, there have been a number of recent calculations of 
the Lindemann criterion for melting of the flux lattice [2-61. These calculations are in 
general agreement that at high fields, the motion of the vortices can decouple from 
the motion of the field, leading to very deformable flux lattices and a low melting 
temperature, TM. A calculation which includes the large effective mass anisotropy leads 
to the conclusion that the low values of TM are directly caused by the large value of the 
effective Ginzburg-Landau parameter, Keff. In turn, Keff is so large because of the 
weakness of interlayer coupling: K: - m,, where m, is the electronic effective mass 
perpendicular to the conducting C u 0 2  planes in these materials. 

It is the purpose of this letter to point out that the expression for the Lindemann 
criterion derived in [6] remains valid in the limit of electronically decoupled layers, 
m, - =. In this limit, the root mean square vortex line displacement U becomes: 

U’/.’ = ( 2 4 n ~ ~ P ~ B / ~ . 3 0 H , 2 ) ~ / ’ k ~ T  (1) 
where a is the flux-lattice constant, Qo is the flux quantum, KI/ is the in-plane Ginzburg- 
Landau parameter, and H ,  is the thermodynamic critical field. Melting is assumed to 
occur when U reaches a definite fraction of the flux line spacing, typically U = 0. l a .  

The above criterion bears a close resemblance to the criterion for the melting of a 
two-dimensional flux lattice (e.g., in a thin film of thickness d )  [7, 81: 

kBTM = ( a * / 4 n ) ~ ~ ~ d  (2) 
where the shear modulus can be written as c66 = a H , B / l b n ~ ,  with a a constant of order 
unity. Equations (1) and (2) become identical, up to a multiplicative constant of order 
unity, if K in (2) is identified with K ~ I ,  and d is replaced by 

def f  = d m .  (3) 
Thus, in this limit, the flux lattice melts almost independently within each layer, but with 
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a weak interlayer coupling which correlates the vortices over a distance def f  = 80 nm at 
B = 1 T. It should be noted that this fluxon coherence length agrees with one of the 
alternative choices (def f  = a )  postulated by both Yeshurun and Malozemoff [9] and 
Tinkham [lo] for the c axis coherence length of a flux bundle involved in an elementary 
flux jump. This interlayer coupling is presumably an electromagnetic effect, as in Giaev- 
er’s DC transformer [ll]. Thus, as the applied field H approaches Hcl ,  the internal 
magnetic field B - 0, and def f  + W. This follows directly from Maxwell’s equations: near 
H,, all of the vortices are isolated, so their coherence length becomes that of an isolated 
tube of magnetic flux, which is infinite, since V B = 0. 

This result has an important bearing on the question of pinning strength in these 
materials. It has been claimed that a three-dimensional flux lattice must be in the strong- 
pinning limit since each vortex will be pinned at at least one point along its length. 
However, if the vortices are only correlated over a distance d e f f ,  then the flux lattice 
should be in the weak-pinning limit if the separation between pinning sites is greater 
than deff  in the direction perpendicular to the layers. 

Note that, since the melting is fundamentally a phenomenon associated with a single 
layer, the transition should be at least as sharp as the ordinary Kosterlitz-Thouless 
transitions in thin films. 

Finally, since the Lindemann criterion holds for fields either parallel or perpendicular 
to the c axis [6], (1) should also be valid when the field is applied parallel to the basal 
plane. The interpretation is less straightforward in this case, since there is no single- 
layer result similar to (2) with which it can be compared. 
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